Tohban EOVSA Imaging Tutorial A-Z V2: Difference between revisions
No edit summary |
No edit summary |
||
Line 195: | Line 195: | ||
vis = calibeovsa.calibeovsa(msfiles, doconcat=True, concatvis=concatvis, caltype=['refpha','phacal'], doimage=True) | vis = calibeovsa.calibeovsa(msfiles, doconcat=True, concatvis=concatvis, caltype=['refpha','phacal'], doimage=True) | ||
### If doimage=True, a quicklook image will be produced (by integrating over the entire time) as shown | ### If doimage=True, a quicklook image will be produced (by integrating over the entire time) as shown in Figure 1 ### | ||
vis_str = str(' '.join(vis)) | vis_str = str(' '.join(vis)) | ||
Line 202: | Line 202: | ||
</pre> | </pre> | ||
[[file:Figure1_imagingtutorial.png|thumb|right| | [[file:Figure1_imagingtutorial.png|thumb|right|250px|'''Figure 1:''' Quick-look full-Sun image after the initial calibration.]] | ||
==== Step 3: Calibration ==== | ==== Step 3: Calibration ==== | ||
Line 211: | Line 211: | ||
vis_str = str(' '.join(vis)) | vis_str = str(' '.join(vis)) | ||
caled_vis=vis_str.replace('.ms','_cal.ms') ### Append '_cal' to the ms filename ### | caled_vis=vis_str.replace('.ms','_cal.ms') ### Append '_cal' to the ms filename ### | ||
split(vis=' '.join(vis),outputvis=caled_vis,datacolumn='corrected',timerange='',correlation='XX') ### Split the corrected column to the new 'caled' ms ### | split(vis=' '.join(vis),outputvis=caled_vis,datacolumn='corrected',timerange='',correlation='XX') ### Split the corrected column to the new 'caled' ms ### | ||
</pre> | </pre> | ||
Line 235: | Line 236: | ||
===Advanced Calibration and Imaging=== | ===Advanced Calibration and Imaging=== | ||
====Step 4: Self-calibration==== | ====Step 4: Self-calibration==== | ||
[[file:Figure3_imagingtutorial.png|thumb| | [[file:Figure3_imagingtutorial.png|thumb|right|250px|Figure 2: Cotton-Schwab clean major and minor cycles. [Source: http://www.aoc.nrao.edu/~rurvashi/ImagingAlgorithmsInCasa/node2.html].]] | ||
Follow the below | Follow the steps below to run the self-calibration of the imaging data and produce the calibrated images in .fits format. https://github.com/binchensun/casa-eovsa/blob/master/slfcal_example.py | ||
<pre style="background-color: #FCEBD9;overflow: auto;width: auto;"> | <pre style="background-color: #FCEBD9;overflow: auto;width: auto;"> | ||
Line 332: | Line 333: | ||
viewer(im_init+'.image.pbcor') | viewer(im_init+'.image.pbcor') | ||
</pre> | </pre> | ||
[[file:Figure2_imagingtutorial.png|thumb| | [[file:Figure2_imagingtutorial.png|thumb|right|250px|Figure 3: Full-Sun image after initial clean to find the flare location.]] | ||
<pre style="background-color: #FCEBD9;overflow: auto;width: auto;"> | <pre style="background-color: #FCEBD9;overflow: auto;width: auto;"> | ||
Line 391: | Line 392: | ||
pickle.dump(masks,open(slfcaldir+'masks.p','wb')) | pickle.dump(masks,open(slfcaldir+'masks.p','wb')) | ||
</pre> | </pre> | ||
[[file:Figure4_imagingtutorial.PNG|thumb| | [[file:Figure4_imagingtutorial.PNG|thumb|right|250px|Figure 4: Interactive clean window to create masks over the source. The white outline surrounding the source is the mask selected by the polygon drawing option.]] | ||
The outlines drawn for masks can be created by any of the icons with the letter 'R' in the Viewer window. The instructions for doing this can be found by hovering over those icons. | The outlines drawn for masks can be created by any of the icons with the letter 'R' in the Viewer window. The instructions for doing this can be found by hovering over those icons. | ||
Line 594: | Line 595: | ||
split(ms_in, ms_slfcaled,datacolumn='corrected') | split(ms_in, ms_slfcaled,datacolumn='corrected') | ||
</pre> | </pre> | ||
[[file:Slf.G0.png|thumb| | [[file:Slf.G0.png|thumb|right|250px|Figure 1: Phase before self-calibration]] | ||
[[file:Slf.G1.png|thumb| | [[file:Slf.G1.png|thumb|right|250px|Figure 2: Phase after self-calibration]] | ||
<pre style="background-color: #FCEBD9;overflow: auto;width: auto;"> | <pre style="background-color: #FCEBD9;overflow: auto;width: auto;"> | ||
Line 679: | Line 680: | ||
The .fits files of the self calibrated images at each frequency for the given time are saved at /slfcal/images_slfcaled in your working directory. | The .fits files of the self calibrated images at each frequency for the given time are saved at /slfcal/images_slfcaled in your working directory. | ||
[[file:Slf_t0_n0.png|thumb| | [[file:Slf_t0_n0.png|thumb|right|250px|Figure 3: Multi-frequency images before self-calibration]] | ||
[[file:Slf_t0_n1.png|thumb| | [[file:Slf_t0_n1.png|thumb|right|250px|Figure 4: Multi-frequency images after self-calibration]] | ||
====Step 5: Quick-look imaging ==== <!-- ====Step 6: Making the full set of images==== --> | ====Step 5: Quick-look imaging ==== <!-- ====Step 6: Making the full set of images==== --> |
Revision as of 11:34, 6 July 2022
This tutorial describes the step-by-step procedure to download EOVSA IDB data, obtain and calibrate the measurement sets (.ms), and, transfer them to the inti server for self-calibration and further analysis.
Pre-requisites
Accounts on Pipeline and Inti or Baozi servers. Sijie and Bin can help with the account set-up for pipeline, inti and boazi.
How to connect to pipeline
Windows: On a windows machine Mobaxterm can be used to connect to Pipeline. For details, see ...
Linux/Unix: On a linux/Mac the ssh commands can be used directly through the terminal:
ssh -L 5902:helios.solar.pvt:20000 guest@ovsa.njit.edu ### when prompted, enter password to guest@ovsa ### ssh -XY your_username@pipeline ### add your username and enter password to your pipeline account, when prompted ###
Alternatively, to avoid typing the longer commands, proxy commands can be added to the ~/.ssh/config file:
vim ~/.ssh/config ### press 'i' to insert content and esc +':wq' to write and quit ### Host * ForwardAgent yes Host * ForwardX11 yes Host ovsa HostName ovsa.njit.edu User guest Host pipeline Hostname pipeline.solar.pvt User your_username ### Insert your pipeline username here ### ProxyCommand ssh -W %h:%p guest@ovsa.njit.edu
Upon saving the ~/.ssh/config file and restarting the terminal, you can connect to pipeline directly using:
ssh -XY pipeline
How to connect to the inti server
NOTE: To connect to inti you must have a NJIT UCID. The arcs have granted access to inti for all SRG members. If you encounter any issue with the login. Please let arcs folks (arcs@njit.edu) know.
Windows: As mentioned above, on a windows machine Mobaxterm can be used to connect to inti. With your NJIT VPN connected, connect to one of the afsconnect servers (for example, afsaccess3.njit.edu) using your UCID and password. Next, ssh into inti.
ssh -XY UCID@afsaccess3.njit.edu ###Insert UCID password if prompted### ssh -XY UCID@inti.hpcnet.campus.njit.edu ###Insert UCID/inti username here###
Proxy commands for inti can also be added to the C:\Program Files\Git\etc\ssh\ssh_config file:
Host inti Hostname inti.hpcnet.campus.njit.edu User UCID ###Insert UCID/inti username here###
Linux/Unix: On a linux/Mac the ssh command can be used:
ssh -XY UCID@inti.hpcnet.campus.njit.edu ### insert UCID here and enter your NJIT UCID password, when prompted ###
Proxy commands for inti can also be added to the ~/.ssh/config (on local machine) file for convenience:
vim ~/.ssh/config ### press 'i' to insert content and esc +':wq' to write and quit ### Host inti Hostname inti.hpcnet.campus.njit.edu User UCID ### insert NJIT UCID here ###
after the proxy is set up, connect to inti by simply typing:
ssh -XY inti ### enter your NJIT UCID password when prompted ###
NOTE:When logging in for the first time, please add the following lines (demarcated by #) in your ~/.bashrc (on the inti server) file in order to use CASA on inti.
#### setting start #### if [ $HOSTNAME == "baozi.hpcnet.campus.njit.edu" ]; then source /srg/.setenv_baozi fi if [ $HOSTNAME == "inti.hpcnet.campus.njit.edu" ]; then source /inti/.setenv_inti fi if [ $HOSTNAME == "guko.resource.campus.njit.edu" ]; then source /data/data/.setenv_guko fi #### setting end ####
For sufficient disk space to analyze EOVSA data on Inti, use your dedicated directory YOURDIRECTORY at the location given below. If you do not have a directory, please ask Sijie to set one up.
cd /inti/data/users/YOURDIRECTORY
Both CASA 5 and 6 are available on Inti.
Enter the bash environment on inti, and load the desired casa environment.
To load CASA 5:
>> bash >> loadcasa5 >> suncasa
To load CASA 6:
>> bash >> loadcasa6 >> ipython
Downloading data and Preliminary Calibration
Step 1: Downloading raw (IDB) data on Pipeline machine
The initial downloading of data and applying refcal and phasecal to the .ms files is performed on the pipeline since the complete EOVSA SQL database is stored here for now.
If you are not using mobaxterm, directly SSH to Pipeline through your Linux or Mac computer (as shown above) and start tcsh to run CASA.
The following commands (run within CASA) can be used to import a single IDB file if the given time-range is less than 10 mins.
from astropy.time import Time import os trange = Time(['2017-08-21 20:15:00', '2017-08-21 20:25:00']) ###Change accordingly### #### (Optional) change output path, default current directory "./" ####### outpath = './msdata/' ###Change accordingly### if not os.path.exists(outpath): os.makedirs(outpath) msfiles = importeovsa(idbfiles=trange, ncpu=1, visprefix=outpath)
NOTE: The above step currently gives an error with importeovsa. This is because the data location was changed and the code doesn't know where to look for the IDB files. Sijie is looking into the problem. We will update the page when it is fixed. For now, please use the method below for all time ranges.
OR (for a time range longer than 10 minutes)
from suncasa.tasks import task_calibeovsa as calibeovsa from suncasa.tasks import task_importeovsa as timporteovsa from split_cli import split_cli as split import dump_tsys as dt from util import Time import numpy as np import os from glob import glob from eovsapy import util trange = Time(['2017-08-21 20:15:00', '2017-08-21 20:35:00']) ###Change accordingly### idbdir = util.get_idbdir(trange[0]) info = dt.rd_fdb(trange[0]) for k, v in info.iteritems(): info[k] = info[k][~(info[k] == '')] sidx = np.where( np.logical_and(info['SOURCEID'] == 'Sun', info['PROJECTID'] == 'NormalObserving') & np.logical_and( info['ST_TS'].astype(np.float) >= trange[0].lv, info['ST_TS'].astype(np.float) <= trange[ 1].lv)) filelist = info['FILE'][sidx] outpath = './msdata/' ###Change accordingly### if not os.path.exists(outpath): os.makedirs(outpath) inpath = idbdir + '{}/'.format(trange[0].datetime.strftime("%Y%m%d")) ncpu = 1 msfiles = timporteovsa.importeovsa(idbfiles=[inpath + ll for ll in filelist], ncpu=ncpu, timebin="0s", width=1, visprefix=outpath, nocreatms=False, doconcat=False, modelms="", doscaling=False, keep_nsclms=False, udb_corr=True)
If you come across errors with calibeovsa, add the following lines to your ~/.casa/init.py (within pipeline) file.
vim ~/.ssh/config ### press 'i' to insert content and esc +':wq' to write and quit ### import sys sys.path.append('/common/python') sys.path.append('/common/python/packages/pipeline_casa') execfile('/common/python/suncasa/tasks/mytasks.py')
Step 2: Concatenate multiple .ms files and Calibrate
Follow this step if there are more than one .ms files for the chosen time-range. If not, move to Step 3.
concatvis = os.path.basename(msfiles[0])[:11] + '_concat_cal.ms' ### Set the path/name for the concatenated files ### vis = calibeovsa.calibeovsa(msfiles, doconcat=True, concatvis=concatvis, caltype=['refpha','phacal'], doimage=True) ### If doimage=True, a quicklook image will be produced (by integrating over the entire time) as shown in Figure 1 ### vis_str = str(' '.join(vis)) caled_vis=vis_str.replace('.ms','_cal.ms') ### Append '_cal' to the ms filename ### split(vis=' '.join(vis),outputvis=caled_vis,datacolumn='corrected',timerange='',correlation='XX') ### Split the corrected column to the new 'caled' ms ###
Step 3: Calibration
For a single .ms file from Step 1, this will calibrate the input visibility, write out calibration tables under /data1/eovsa/caltable/, and apply the calibration.
vis = calibeovsa.calibeovsa('IDB20170821202020.ms', caltype=['refpha','phacal'], doimage=True) ###Change the vis filename accordingly### vis_str = str(' '.join(vis)) caled_vis=vis_str.replace('.ms','_cal.ms') ### Append '_cal' to the ms filename ### split(vis=' '.join(vis),outputvis=caled_vis,datacolumn='corrected',timerange='',correlation='XX') ### Split the corrected column to the new 'caled' ms ###
The created 'caled' ms data files (xxx_concat_cal.ms or xxx_cal.ms) need to be transferred from pipeline to inti server, which has all the casa tasks installed, in order to run the rest of the imaging steps.
Transferring data files between servers
To directly transfer your calibrated .ms data from the Pipeline to Inti:
1. Log into Inti using your username. ssh -X USERNAME@inti.hpcnet.campus.njit.edu Then create a tunnel into Pipeline from Inti. ssh -L 8888:pipeline.solar.pvt:22 guest@ovsa.njit.edu 2. Log into Inti again from a new terminal. Change to your working directory (where you need the data transferred) and give the following command: scp -v -C -r -P 8888 PipelineUSERNAME@localhost:PATH/TO/MSFILE ./
Advanced Calibration and Imaging
Step 4: Self-calibration
Follow the steps below to run the self-calibration of the imaging data and produce the calibrated images in .fits format. https://github.com/binchensun/casa-eovsa/blob/master/slfcal_example.py
bash loadcasa5 suncasa from suncasa.utils import helioimage2fits as hf import os import numpy as np import pickle from matplotlib import gridspec as gridspec from sunpy import map as smap from matplotlib import pyplot as plt from split_cli import split_cli as split import time # =========== task handlers ============= dofullsun = 1 # initial full-sun imaging ###Change accordingly### domasks=1 # get masks ###Change accordingly### doslfcal=1 # main cycle of doing selfcalibration ###Change accordingly### doapply=1 # apply the results ###Change accordingly### doclean_slfcaled=1 # perform clean for self-calibrated data ###Change accordingly### # ============ declaring the working directories ============ workdir = os.getcwd()+'/' #main working directory. Using current directory in this example slfcaldir = workdir+'slfcal/' #place to put all selfcalibration products imagedir = slfcaldir+'images/' #place to put all selfcalibration images maskdir = slfcaldir+'masks/' #place to put clean masks imagedir_slfcaled = slfcaldir+'images_slfcaled/' #place to put final self-calibrated images caltbdir = slfcaldir+'caltbs/' # place to put calibration tables # make these directories if they do not already exist dirs = [workdir, slfcaldir, imagedir, maskdir, imagedir_slfcaled, caltbdir] for d in dirs: if not os.path.exists(d): os.makedirs(d) # ============ Split a short time for self-calibration =========== # input visibility ms_in = workdir + 'IDB20170821202020_cal.ms' ###Change the initial calibrated (through calibeovsa) vis accordingly### # output, selfcaled, visibility ms_slfcaled = workdir + os.path.basename(ms_in).replace('cal','slfcaled') # intermediate small visibility for selfcalbration # selected time range for generating self-calibration solutions trange='2017/08/21/20:21:10~2017/08/21/20:21:30' ###Change accordingly### slfcalms = slfcaldir+'slfcalms.XX.slfcal' slfcaledms = slfcaldir+'slfcalms.XX.slfcaled' if not os.path.exists(slfcalms): split(vis=ms_in,outputvis=slfcalms,datacolumn='data',timerange=trange,correlation='XX') # ============ Prior definitions for spectral windows, antennas, pixel numbers ========= spws=[str(s+1) for s in range(30)] # spws=[str(s+1) for s in range(49)] # For post-2020 data antennas='0~12&0~12' npix=512 nround=3 #number of slfcal cycles # =========== Step 1, doing a full-Sun image to find out phasecenter and appropriate field of view ========= if dofullsun: #initial mfs clean to find out the image phase center im_init='fullsun_init' os.system('rm -rf '+im_init+'*') tclean(vis=slfcalms, antenna=antennas, imagename=im_init, spw='2~15', specmode='mfs', timerange=trange, imsize=[npix], cell=['5arcsec'], niter=1000, gain=0.05, stokes='I', restoringbeam=['30arcsec'], interactive=False, pbcor=True) hf.imreg(vis=slfcalms,imagefile=im_init+'.image.pbcor',fitsfile=im_init+'.fits', timerange=trange,usephacenter=False,verbose=True) clnjunks = ['.flux', '.mask', '.model', '.psf', '.residual','.sumwt','.pb','.image'] #Do not run the next 4 lines if needed to view and assess the subset of clean process images for clnjunk in clnjunks: if os.path.exists(im_init + clnjunk): os.system('rm -rf '+im_init + clnjunk) from sunpy import map as smap from matplotlib import pyplot as plt fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) eomap=smap.Map(im_init+'.fits') #eomap.data=eomap.data.reshape((npix,npix)) eomap.plot_settings['cmap'] = plt.get_cmap('jet') eomap.plot(axes = ax) eomap.draw_limb() plt.show() viewer(im_init+'.image.pbcor')
# parameters specific to the event (found from step 1) phasecenter='J2000 10h02m59 11d58m07' ###Change accordingly### xran=[280,480] ###Change accordingly### yran=[-50,150] ###Change accordingly### # =========== Step 2 (optional), generate masks ========= # if skipped, will not use any masks if domasks: clearcal(slfcalms) delmod(slfcalms) antennas=antennas pol='XX' imgprefix=maskdir+'slf_t0' # step 1: set up the clean masks img_init=imgprefix+'_init_ar_' os.system('rm -rf '+img_init+'*') #spwrans_mask=['1~5','6~12','13~20','21~30'] spwrans_mask=['2~12'] #convert to a list of spws spwrans_mask_list = [[str(i) for i in (np.arange(int(m.split('~')[0]),int(m.split('~')[1])))] for m in spwrans_mask] # Not used? masks=[] imnames=[] for spwran in spwrans_mask: imname=img_init+spwran.replace('~','-') try: tclean(vis=slfcalms, antenna=antennas, imagename=imname, spw=spwran, specmode='mfs', timerange=trange, imsize=[npix], cell=['2arcsec'], niter=1000, gain=0.05, stokes='XX', restoringbeam=['20arcsec'], phasecenter=phasecenter, weighting='briggs', robust=1.0, interactive=True, datacolumn='data', pbcor=True, savemodel='modelcolumn') imnames.append(imname+'.image') masks.append(imname+'.mask') clnjunks = ['.flux', '.model', '.psf', '.residual'] #Do not run the next 4 lines if needed to view and assess the subset of clean process images for clnjunk in clnjunks: if os.path.exists(imname + clnjunk): os.system('rm -rf '+ imname + clnjunk) except: print('error in cleaning spw: '+spwran) pickle.dump(masks,open(slfcaldir+'masks.p','wb'))
The outlines drawn for masks can be created by any of the icons with the letter 'R' in the Viewer window. The instructions for doing this can be found by hovering over those icons.
# =========== Step 3, main step of selfcalibration ========= if doslfcal: if os.path.exists(slfcaldir+'masks.p'): masks=pickle.load(open(slfcaldir+'masks.p','rb')) if not os.path.exists(slfcaldir+'masks.p'): print 'masks do not exist. Use default mask' masks=[] os.system('rm -rf '+imagedir+'*') os.system('rm -rf '+caltbdir+'*') #first step: make a mock caltable for the entire database print('Processing ' + trange) slftbs=[] calprefix=caltbdir+'slf' imgprefix=imagedir+'slf' tb.open(slfcalms+'/SPECTRAL_WINDOW') reffreqs=tb.getcol('REF_FREQUENCY') bdwds=tb.getcol('TOTAL_BANDWIDTH') cfreqs=reffreqs+bdwds/2. tb.close() # starting beam size at 3.4 GHz in arcsec #Change accordingly sbeam=40. strtmp=[m.replace(':','') for m in trange.split('~')] timestr='t'+strtmp[0]+'-'+strtmp[1] refantenna='0' # number of iterations for each round niters=[100, 300, 500] # roburst value for weighting the baselines robusts=[1.0, 0.5, 0.0] # apply calibration tables? Set to true for most cases doapplycal=[1,1,1] # modes for calibration, 'p' for phase-only, 'a' for amplitude only, 'ap' for both calmodes=['p','p','a'] # setting uvranges for model image (optional, not used here) uvranges=['','',''] for n in range(nround): slfcal_tb_g= calprefix+'.G'+str(n) fig = plt.figure(figsize=(8.4,7.)) # fig = plt.figure(figsize=(14, 7)) # For post-2020 data (50 spws) gs = gridspec.GridSpec(5, 6) # gs = gridspec.GridSpec(5, 10) # For post-2020 data (50 spws) for s,sp in enumerate(spws): print 'processing spw: '+sp cfreq=cfreqs[int(sp)] # setting restoring beam size (not very useful for selfcal anyway, but just to see the results) bm=max(sbeam*cfreqs[1]/cfreq, 6.) slfcal_img = imgprefix+'.spw'+sp.zfill(2)+'.slfcal'+str(n) # only the first round uses nearby spws for getting initial model if n == 0: spbg=max(int(sp)-2,1) # spbg=max(int(sp)-2,0) # For post-2020 data (50 spws) sped=min(int(sp)+2,30) # sped=min(int(sp)+2,49) # For post-2020 data (50 spws) spwran=str(spbg)+'~'+str(sped) print('using spw {0:s} as model'.format(spwran)) if 'spwrans_mask' in vars(): for m, spwran_mask in enumerate(spwrans_mask): if sp in spwran_mask: mask = masks[m] print('using mask {0:s}'.format(mask)) findmask = True if not findmask: print('mask not found. Do use any masks') else: spwran = sp if 'spwrans_mask' in vars(): for m, spwran_mask in enumerate(spwrans_mask): if sp in spwran_mask: mask = masks[m] print 'using mask {0:s}'.format(mask) findmask = True if not findmask: print('mask not found. Do use any masks') try: tclean(vis=slfcalms, antenna=antennas, imagename=slfcal_img, uvrange=uvranges[n], spw=spwran, specmode='mfs', timerange=trange, imsize=[npix], cell=['2arcsec'], niter=niters[n], gain=0.05, stokes='XX', #use pol XX image as the model weighting='briggs', robust=robusts[n], phasecenter=phasecenter, mask=mask, restoringbeam=[str(bm)+'arcsec'], pbcor=False, interactive=False, savemodel='modelcolumn') if os.path.exists(slfcal_img+'.image'): fitsfile=slfcal_img+'.fits' hf.imreg(vis=slfcalms,imagefile=slfcal_img+'.image',fitsfile=fitsfile, timerange=trange,usephacenter=False,toTb=True,verbose=False,overwrite=True) clnjunks = ['.mask','.flux', '.model', '.psf', '.residual', '.image','.pb','.image.pbcor','.sumwt'] #Do not run the next 4 lines if needed to view and assess the subset of clean process images for clnjunk in clnjunks: if os.path.exists(slfcal_img + clnjunk): os.system('rm -rf '+ slfcal_img + clnjunk) ax = fig.add_subplot(gs[s]) eomap=smap.Map(fitsfile) eomap.plot_settings['cmap'] = plt.get_cmap('jet') eomap.plot(axes = ax) eomap.draw_limb() #eomap.draw_grid() ax.set_title(' ') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.set_xlim(xran) ax.set_ylim(yran) plt.pause(0.5) # Allows viewing of each image as it is plotted. os.system('rm -f '+ fitsfile) except: print 'error in cleaning spw: '+sp print 'using nearby spws for initial model' sp_e=int(sp)+2 sp_i=int(sp)-2 if sp_i < 1: # if sp < 0: # For post-2020 data (50 spws) sp_i = 1 # sp_i = 0 # For post-2020 data (50 spws) if sp_e > 30: # if sp_e > 49: # For post-2020 data (50 spws) sp_e = 30 # sp_e = 49 # For post-2020 data (50 spws) sp_=str(sp_i)+'~'+str(sp_e) try: tget(tclean) spw=sp_ print('using spw {0:s} as model'.format(sp_)) tclean() except: print 'still not successful. abort...' break gaincal(vis=slfcalms, refant=refantenna,antenna=antennas,caltable=slfcal_tb_g,spw=sp, uvrange='',\ gaintable=[],selectdata=True,timerange=trange,solint='inf',gaintype='G',calmode=calmodes[n],\ combine='',minblperant=4,minsnr=2,append=True) if not os.path.exists(slfcal_tb_g): print 'No solution found in spw: '+sp figname=imagedir+'slf_t0_n{:d}.png'.format(n) plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(figname) time.sleep(10) plt.close() if os.path.exists(slfcal_tb_g): slftbs.append(slfcal_tb_g) slftb=[slfcal_tb_g] os.chdir(slfcaldir) if calmodes[n] == 'p': plotcal(caltable=slfcal_tb_g,antenna='1~12',xaxis='freq',yaxis='phase',\ subplot=431,plotrange=[-1,-1,-180,180],iteration='antenna',figfile=slfcal_tb_g+'.png',showgui=False) if calmodes[n] == 'a': plotcal(caltable=slfcal_tb_g,antenna='1~12',xaxis='freq',yaxis='amp',\ subplot=431,plotrange=[-1,-1,0,2.],iteration='antenna',figfile=slfcal_tb_g+'.png',showgui=False) os.chdir(workdir) plt.pause(0.5) # Allows viewing of the plot if doapplycal[n]: clearcal(slfcalms) delmod(slfcalms) applycal(vis=slfcalms,gaintable=slftb,spw=','.join(spws),selectdata=True,\ antenna=antennas,interp='nearest',flagbackup=False,applymode='calonly',calwt=False) if n < nround-1: prompt=raw_input('Continuing to selfcal?') #prompt='y' if prompt.lower() == 'n': if os.path.exists(slfcaledms): os.system('rm -rf '+slfcaledms) split(slfcalms,slfcaledms,datacolumn='corrected') print 'Final calibrated ms is {0:s}'.format(slfcaledms) break if prompt.lower() == 'y': slfcalms_=slfcalms+str(n) if os.path.exists(slfcalms_): os.system('rm -rf '+slfcalms_) split(slfcalms,slfcalms_,datacolumn='corrected') slfcalms=slfcalms_ else: if os.path.exists(slfcaledms): os.system('rm -rf '+slfcaledms) split(slfcalms,slfcaledms,datacolumn='corrected') print 'Final calibrated ms is {0:s}'.format(slfcaledms)
# =========== Step 4: Apply self-calibration tables ========= if doapply: import glob os.chdir(workdir) clearcal(ms_in) clearcal(slfcalms) applycal(vis=slfcalms,gaintable=slftbs,spw=','.join(spws),selectdata=True,\ antenna=antennas,interp='linear',flagbackup=False,applymode='calonly',calwt=False) applycal(vis=ms_in,gaintable=slftbs,spw=','.join(spws),selectdata=True,\ antenna=antennas,interp='linear',flagbackup=False,applymode='calonly',calwt=False) if os.path.exists(ms_slfcaled): os.system('rm -rf '+ms_slfcaled) split(ms_in, ms_slfcaled,datacolumn='corrected')
# =========== Step 5: Generate final self-calibrated images (optional) ========= if doclean_slfcaled: import glob pol='XX' print('Processing ' + trange) img_final=imagedir_slfcaled+'/slf_final_{0}_t0'.format(pol) vis = ms_slfcaled spws=[str(s+1) for s in range(30)] tb.open(vis+'/SPECTRAL_WINDOW') reffreqs=tb.getcol('REF_FREQUENCY') bdwds=tb.getcol('TOTAL_BANDWIDTH') cfreqs=reffreqs+bdwds/2. tb.close() sbeam=30. from matplotlib import gridspec as gridspec from sunpy import map as smap from matplotlib import pyplot as plt fitsfiles=[] for s,sp in enumerate(spws): cfreq=cfreqs[int(sp)] bm=max(sbeam*cfreqs[1]/cfreq,4.) imname=img_final+'_s'+sp.zfill(2) fitsfile=imname+'.fits' if not os.path.exists(fitsfile): print 'cleaning spw {0:s} with beam size {1:.1f}"'.format(sp,bm) try: tclean(vis=vis, antenna=antennas, imagename=imname, spw=sp, specmode='mfs', timerange=trange, imsize=[npix], cell=['1arcsec'], niter=1000, gain=0.05, stokes=pol, weighting='briggs', robust=2.0, restoringbeam=[str(bm)+'arcsec'], phasecenter=phasecenter, mask='', pbcor=True, interactive=False) except: print 'cleaning spw '+sp+' unsuccessful. Proceed to next spw' continue if os.path.exists(imname+'.image.pbcor'): imn = imname+'.image.pbcor' hf.imreg(vis=vis,imagefile=imn,fitsfile=fitsfile, timerange=trange,usephacenter=False,toTb=True,verbose=False) fitsfiles.append(fitsfile) junks=['.flux','.model','.psf','.residual','.mask','.image','.pb','.image.pbcor','.sumwt'] #Do not run the next 4 lines if needed to view and assess the subset of clean process images for junk in junks: if os.path.exists(imname+junk): os.system('rm -rf '+imname+junk) else: print('fits file '+fitsfile+' already exists, skip clean...') fitsfiles.append(fitsfile) fig = plt.figure(figsize=(8.4,7.)) # fig = plt.figure(figsize=(14, 7)) # For post-2020 data (50 spws) gs = gridspec.GridSpec(5, 6) # gs = gridspec.GridSpec(5, 10) # For post-2020 data (50 spws) for s,sp in enumerate(spws): cfreq=cfreqs[int(sp)] ax = fig.add_subplot(gs[s]) eomap=smap.Map(fitsfiles[s]) eomap.plot_settings['cmap'] = plt.get_cmap('jet') eomap.plot(axes = ax) eomap.draw_limb() ax.set_title(' ') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.set_xlim(xran) ax.set_ylim(yran) plt.text(0.98,0.85,'{0:.1f} GHz'.format(cfreq/1e9),transform=ax.transAxes,ha='right',color='w',fontweight='bold') plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.show()
The .fits files of the self calibrated images at each frequency for the given time are saved at /slfcal/images_slfcaled in your working directory.
Step 5: Quick-look imaging
For spectral imaging analysis of the event, follow this tutorial using the self-calibrated data obtained from the previous step or use this link.
from suncasa.utils import qlookplot as ql ## (Optional) Supply the npz file of the dynamic spectrum from previous step. ## If not provided, the program will generate a new one from the visibility. ## set the time interval from suncasa import dspec as ds import time visibility_data = 'IDB20170821202020_slfcaled.ms' specfile = visibility_data + '.dspec.npz' d = ds.Dspec(visibility_data, bl='4&9', specfile=specfile) timerange = '19:02:00~19:02:10' ## select frequency range from 2.5 GHz to 3.5 GHz spw = '2~5' ## select stokes XX stokes = 'XX' ## turn off AIA image plotting, default is True plotaia = False xycen = [375, 45] ## image center for clean in solar X-Y in arcsec cell=['2.0arcsec'] ## pixel size imsize=[128] ## x and y image size in pixels. fov = [100,100] ## field of view of the zoomed-in panels in unit of arcsec spw = ['{}'.format(s) for s in range(1,31)] clevels = [0.5, 1.0] ## contour levels to fill in between. calpha=0.35 ## now tune down the alpha restoringbeam=['6arcsec'] ql.qlookplot(vis=msfile, specfile=specfile, timerange=timerange, spw=spw, stokes=stokes, \ restoringbeam=restoringbeam,imsize=imsize,cell=cell, \ xycen=xycen,fov=fov,clevels=clevels,calpha=calpha)
Page Last Updated: 07/06/2022