Polarization Calibration: Difference between revisions

From EOVSA Wiki
Jump to navigation Jump to search
Line 30: Line 30:
When I plot the quantities I, V, R and L as measured (Figure 1) for geosynchronous satellite Ciel-2, the results look reasonable, except that there are parts of the band where R and L are mis-assigned, and others where they do not separate well.
When I plot the quantities I, V, R and L as measured (Figure 1) for geosynchronous satellite Ciel-2, the results look reasonable, except that there are parts of the band where R and L are mis-assigned, and others where they do not separate well.


The problem is that residual phase slope of Y with respect to X, caused by a difference in delay between the two channels.  This can be seen in the upper panel of Figure 2, which shows the uncorrected phases of XY^* and YX^*.  To correct the phases, the RCP phase was fit by a linear least-squares routine, and then the phases were offset by !pi/2 for both XY* and YX* according to:
The problem is that residual phase slope of Y with respect to X, caused by a difference in delay between the two channels.  This can be seen in the upper panel of Figure 2, which shows the uncorrected phases of XY^* and YX^*.  To correct the phases, the RCP phase was fit by a linear least-squares routine, and then the phases were offset by &Pi/2 for both XY* and YX* according to:


== Polarization Mixing Correction ==
== Polarization Mixing Correction ==
Due to relative feed rotation between az-al mounted antennas and equatorial mounted antennas
Due to relative feed rotation between az-al mounted antennas and equatorial mounted antennas

Revision as of 20:17, 24 September 2016

Linear to Circular Conversion

At EOVSA’s linear feeds, in the electric field the linear polarization, X and Y, relates to RCP and LCP (R and L) as:

In terms of autocorrelation powers, we have the 4 polarization products XX*, YY*, XY* and YX*, where the * denotes complex conjugation. The quantities RR* and LL* are then

One problem is that there is generally a non-zero delay in Y with respect to X. This creates phase slopes in XY* and YX* from which we can determine the delay very accurately. As a check,

For completeness:

When I plot the quantities I, V, R and L as measured (Figure 1) for geosynchronous satellite Ciel-2, the results look reasonable, except that there are parts of the band where R and L are mis-assigned, and others where they do not separate well.

The problem is that residual phase slope of Y with respect to X, caused by a difference in delay between the two channels. This can be seen in the upper panel of Figure 2, which shows the uncorrected phases of XY^* and YX^*. To correct the phases, the RCP phase was fit by a linear least-squares routine, and then the phases were offset by &Pi/2 for both XY* and YX* according to:

Polarization Mixing Correction

Due to relative feed rotation between az-al mounted antennas and equatorial mounted antennas