2017 April: Difference between revisions
(→Apr 10) |
(→Apr 10) |
||
Line 52: | Line 52: | ||
'''04:45 UT''' I have been doing more tests. At the end of the solar day, I did three PA-SWEEP scans on 3C84, each one a single frequency, with the idea of getting better SNR than I had earlier on 2136+006. That worked great, so I will be able to investigate these data in some detail and perhaps get a better idea of the effects of feed rotation. I also worked for awhile longer on changing the EQ coefficients, and it is very clear that setting them around 4 is much better than the current value of 32. I recall that I did that before and then did not like the results, but there is really no question that it is the right thing to do. I am now observing 3C273 with the broad frequency range (both receivers), to check that the results are okay, and make sure the phase does not change when the EQ coefficients are reset. | '''04:45 UT''' I have been doing more tests. At the end of the solar day, I did three PA-SWEEP scans on 3C84, each one a single frequency, with the idea of getting better SNR than I had earlier on 2136+006. That worked great, so I will be able to investigate these data in some detail and perhaps get a better idea of the effects of feed rotation. I also worked for awhile longer on changing the EQ coefficients, and it is very clear that setting them around 4 is much better than the current value of 32. I recall that I did that before and then did not like the results, but there is really no question that it is the right thing to do. I am now observing 3C273 with the broad frequency range (both receivers), to check that the results are okay, and make sure the phase does not change when the EQ coefficients are reset. | ||
'''05:18 UT''' The results are in, and the delays are unchanged. It is not possible to tell if the data are in any way better with the more appropriate EQ coefficients. It will be more obvious with the solar data, which should have more structure (more dynamic range), but may also show more blemishes as a result. But linearity is important, and we have to have good EQ coefficients. | '''05:18 UT''' The results are in, and the delays are unchanged. It is not possible to tell if the data are in any way better with the more appropriate EQ coefficients. It will be more obvious with the solar data, which should have more structure (more dynamic range), but may also show more blemishes as a result. But linearity is important, and we have to have good EQ coefficients. Since Ant 14 can now do DCM attenuation vs. band, I just now edited PHASECAL.ctl to allow DCMAUTO-ON for that antenna. It will take effect on the next scan change, starting at 05:27 UT. |
Revision as of 05:23, 10 April 2017
Apr 01
23:50 UT We had some nice solar activity (M4 flare) around 21:50 UT, which was completely covered by RHESSI. I am taking some calibration data (3C84, pcal.fsq) starting around 00:20 UT, and hope that we can do some imaging of this event. The wind has been high for two straight days, but has finally subsided for the first time, to enable the calibration.
Apr 02
11:04 UT The system took data on 3C273 and 3C286 all night, using pcal.fsq and 30-min scans. The data look very nice, but I am not happy with the oscillations I saw in yesterday's solar data, which I suspect may be due to an unsynchronized correlator clock. Therefore, I rebooted the ROACHes (Kjell connected the 10 MHz reference to the signal generator on Friday), in the hopes that it will perform better in the long-term. I am now taking data on 3C286 with 3bands.fsq, with which to determine and correct delay changes due to the reboot. There was another M flare overnight, so more activity may be present today.
Apr 03
02:07 UT We got no less than three (!) M-class flares today (yesterday in UT day). The M2 flare observed after 1800UT was covered by RHESSI in its rise phase. The observations went well, and I also did a gain/attenuation calibration observation, to attempt to remove the effect of attenuation changes on total power and correlation data. Unfortunately, the wind came up this afternoon and we did not get a successful 3C84 calibration. We did get the morning and noon one, however.
Apr 04
04:20 UT I am running a new schedule called two_src_pa-track.scd, which is tracking the Ant14 position angle, alternating between 3C273 and 3C286 every 30 minutes, and using pcal.fsq. The wind is going to be a problem, it looks like... I corrected Ant 13's and . I also have good corrections, but I am not sure of the sign, so I am afraid to set them. I discovered a nice way to plot the data (Figure 1), to find the correction without any ambiguities.
04:42 UT After about 20 min, I noticed a problem with the schedule--it was not listing the type of observation as PHASECAL (called it PACAL instead). I updated the schedule to fix that, and while I was at it, I bit the bullet and set the values after all. We'll just see how it goes, and whether I have the wrong sign or not. I elected to just follow the same approach as for and .
05:54 UT The data look great! The corrections are definitely an improvement, see Figure 2. Also, the PA rotation is working perfectly, so that the XY and YX phases on ants 1-8 are just noise, and the other polarizations are strong and flat. The wind is cooperating, so I suppose this will continue all evening and provide an excellent basis for checking all of the baseline corrections.
12:03 UT The calibration demonstrates that the baselines are nailed. Figure 3 shows the phases vs. HA on the lowest frequency. Figure 4 shows multi-band delays (phase vs. frequency) after integrating over the entire timerange. In Figure 3, the phases are identical, and essentially flat, for the two sources 3C273 (blue) and 3C286 (orange). In Figure 4, the phases are identical (blue points are almost invisible) over the entire frequency range, except there is perhaps a slight error on Ant 8 and, especially, Ant 13.
16:50 UT For some reason, this morning's calibrator observation did not run. I am running it now, although since it is already in solar daytime, I cannot run it for an hour. I will limit it to 30 minutes and hope no large flares occur. Also, I updated the delays (only very small changes were needed).
Apr 05
21:56 UT Just a note to say that I found the tunable LO not switching (must have missed the FSEQ-ON command somehow), and it was that way for about 20 minutes (since 21:35 UT). I issued FSEQ-ON, and it seems to be running now.
Apr 07
13:00 UT I did a calibration observation on 3C273 that alternated between the Lo and Hi frequency receivers all night, using two new sequences that covered every frequency band. The sequences are pcal_lo-all.fsq and pcal_hi-all.fsq. I did 10-min scans on the Lo receiver, and then 30-min scans on the Hi receiver. Although a few scans did not run due to wind, we had several nice ones, and the data quality is very good. Having every band revealed some 1-ns delay errors. We expect to run this sequence of observations as the standard one in the future. The schedule file was 3c273_lohi.scd, and uses two macro commands LOSELECT.ctl and HISELECT.ctl to switch receivers.
20:00 UT We had a nice C-class solar flare at about 19:50 UT.
Apr 08
04:35 UT I am repeating the calibration as for last night, after adjusting delays. The first scan went okay, but now the wind has come up and will spoil the next one. I notice that Ant13 front end is not returning data. I tried rebooting, but it did not help. So there will be no data from that antenna tonight...
13:21 UT The observations went well except for a couple of scans. Ant13 did come back toward the end of the night, but was not pointing well. The delays were all excellent, except, strangely, for Ant 8, which was off by 1 ns. I have updated that delay this morning. I am now about to do an experiment. I will do the PA-SWEEP exercise on bands 13, 15 and 17, in succession, on source 2136+006. I am hoping to learn something more about feed rotation.
15:12 UT I have analyzed the data, and it is interesting, but a bit too noisy. This would be worthwhile to repeat on 3C273 tonight. Actually, I could interrupt the solar schedule and do it on 3C84 when it becomes available around 19:00 UT. The problem is that it's parallactic angle is so large.
Apr 09
18:22 UT I have been working all morning on the gain levels in the system. I am very frustrated that there continues to be some sort of bug in the DCM_cal routine in roachcal.py. It seems to work when I fix the attenuation of the DCMs prior to the measurement (by issuing the dcmauto-off command). However, if I try to use dcmauto-on, which reads the current DCM table from the database, it seems to mix up the bands somehow. While working on this, I discovered that Ant 2 had the wrong FEM coefficients! It had the ones from Ant 1, which are very different. After I got this corrected, the unusually low Ant 2 DCM levels are gone! This has been a problem for 6 months or more... I also got Ant 14 DCM attenuations working, so it should be okay now to use dcmauto-on for all antennas.
What got me started on this is that I find the auto-correlations are way different from the power levels, meaning that the equalizer coefficients are not correct. Before fixing them, I wanted to make sure that the ADCs were in a good range, which they are now.
Apr 10
04:45 UT I have been doing more tests. At the end of the solar day, I did three PA-SWEEP scans on 3C84, each one a single frequency, with the idea of getting better SNR than I had earlier on 2136+006. That worked great, so I will be able to investigate these data in some detail and perhaps get a better idea of the effects of feed rotation. I also worked for awhile longer on changing the EQ coefficients, and it is very clear that setting them around 4 is much better than the current value of 32. I recall that I did that before and then did not like the results, but there is really no question that it is the right thing to do. I am now observing 3C273 with the broad frequency range (both receivers), to check that the results are okay, and make sure the phase does not change when the EQ coefficients are reset.
05:18 UT The results are in, and the delays are unchanged. It is not possible to tell if the data are in any way better with the more appropriate EQ coefficients. It will be more obvious with the solar data, which should have more structure (more dynamic range), but may also show more blemishes as a result. But linearity is important, and we have to have good EQ coefficients. Since Ant 14 can now do DCM attenuation vs. band, I just now edited PHASECAL.ctl to allow DCMAUTO-ON for that antenna. It will take effect on the next scan change, starting at 05:27 UT.