Caius' Notes: Difference between revisions
No edit summary |
|||
(20 intermediate revisions by 2 users not shown) | |||
Line 30: | Line 30: | ||
<pre style="font-family:courier">ssh -X user@pipeline </pre> | <pre style="font-family:courier">ssh -X user@pipeline </pre> | ||
To verify the antennas that were working, check the observing log http://ovsa.njit.edu/wiki/index.php/2024_May, | |||
or consult the TPCAL log file, e.g. more /dppdata1/TPCAL/LOG/TPCyyyymmdd.log | |||
Create the flare directory at /data1/dgary/solar/, e.g: | Create the flare directory at /data1/dgary/solar/, e.g: | ||
Line 42: | Line 44: | ||
loadpyenv3.8 | loadpyenv3.8 | ||
ipython --pylab</pre> | ipython --pylab</pre> | ||
In Python, enter the following: | |||
<pre style="font-family:courier">from eovsapy import flare_spec as fs | |||
from eovsapy.util import Time </pre> | |||
To download the IDB directories form the SQL cloud, enter the flare interval as: | |||
<pre style="font-family:courier">files = fs.calIDB(Time(['2024-05-07 16:20','2024-05-07 16:35'])) </pre> | |||
If the IDB already exist, they can be read as: | |||
<pre style="font-family:courier">files = ['IDB20240507162024','IDB20240507163024'] </pre> | |||
Or all the IDB files can be read as: | |||
<pre style="font-family:courier">import glob | |||
files = sorted(glob.glob('IDB*')) </pre> | |||
When all the antennas were fine, enter the following: | |||
<pre style="font-family:courier">out, spec = fs.inspect(files) </pre> | |||
But, if one or more antennas weren't working, enter the list of the good ones as: | |||
<pre style="font-family:courier"> out, spec = fs.inspect(files, ant_str='ant1-6 ant8-9 ant11-13') </pre> | |||
[[File:Out_spec.png|none|thumb|center|500px|]] | |||
To better see the flare, you can change the spec vmax as: | |||
<pre style="font-family:courier"> imshow(spec,vmax=30,vmin=-1) </pre> | |||
[[File:Out_spec2.png|none|thumb|center|500px|]] | |||
Use the figure above to choose the background interval (bgidx), the maximum intensity and the frequencies. | |||
The tpk (Time of the peak) determines the name of the resulting files (.png and .fits), and also determines the flare_id. | |||
It's better to keep the formate of tpk as tpk='yyyy-mm-dd hh:mm:00' and add the flare time on wiki in the format of "hh:mm": | |||
<pre style="font-family:courier"> f, ax0, ax1 = fs.make_plot(out,bgidx=[200,210],vmin=0.1, vmax=110, lcfreqs=[120,190,270,350],ant_str='ant1-6 ant8-9 ant11-13', tpk='2024-05-07 16:30:00') </pre> | |||
[[File:eovsa.spec.flare_id_20240507163000.png|none|thumb|center|500px|]] | |||
A second background interval can be defined right after the first one, e.g., bg2idx=[1000,1010] | |||
In this example, the output files are eovsa.spec.flare_id_20240507163000.fits and eovsa.spec.flare_id_20240507163000.fits. | |||
At the end, copy the .fits file to /common/webplots/events/2024: | |||
<pre style="font-family:courier"> cp eovsa.spec.flare_id_20240507163000.fits /common/webplots/events/2024 </pre> | |||
and include the flare in the wiki Flare List: | |||
http://ovsa.njit.edu/wiki/index.php/2024 | |||
The flare position have been copied from the https://solarmonitor.org/ |
Latest revision as of 13:19, 5 August 2024
EOVSA flare spectrograms
Checking the possible EOVSA
Verify the possible flares on the daily EOVSA Solar Dynamic Spectrogram, for example:
http://ovsa.njit.edu/browser/?suntoday_date=2024-05-07
In this example, we are going to analyze the M8.2 flare that happened after 16:00 UT.
For a better flare time precision, a Dynamic spectrogram with short time range at:
http://ovsa.njit.edu/flaremon/
Since 2024-May-05, the Real Time Flare detection figure and its list are also available:
http://ovsa.njit.edu/flaremon/FLM20240507.png http://ovsa.njit.edu/flaremon/flarelist/flarelist_2024-05-07.txt
Using Python 3.8
Login into pipeline machine as user:
ssh -X user@pipeline
To verify the antennas that were working, check the observing log http://ovsa.njit.edu/wiki/index.php/2024_May,
or consult the TPCAL log file, e.g. more /dppdata1/TPCAL/LOG/TPCyyyymmdd.log
Create the flare directory at /data1/dgary/solar/, e.g:
mkdir 20240507_M8flare cd 20240507_M8flare
Load the Python 3.8 environment:
bash loadpyenv3.8 ipython --pylab
In Python, enter the following:
from eovsapy import flare_spec as fs from eovsapy.util import Time
To download the IDB directories form the SQL cloud, enter the flare interval as:
files = fs.calIDB(Time(['2024-05-07 16:20','2024-05-07 16:35']))
If the IDB already exist, they can be read as:
files = ['IDB20240507162024','IDB20240507163024']
Or all the IDB files can be read as:
import glob files = sorted(glob.glob('IDB*'))
When all the antennas were fine, enter the following:
out, spec = fs.inspect(files)
But, if one or more antennas weren't working, enter the list of the good ones as:
out, spec = fs.inspect(files, ant_str='ant1-6 ant8-9 ant11-13')
To better see the flare, you can change the spec vmax as:
imshow(spec,vmax=30,vmin=-1)
Use the figure above to choose the background interval (bgidx), the maximum intensity and the frequencies.
The tpk (Time of the peak) determines the name of the resulting files (.png and .fits), and also determines the flare_id.
It's better to keep the formate of tpk as tpk='yyyy-mm-dd hh:mm:00' and add the flare time on wiki in the format of "hh:mm":
f, ax0, ax1 = fs.make_plot(out,bgidx=[200,210],vmin=0.1, vmax=110, lcfreqs=[120,190,270,350],ant_str='ant1-6 ant8-9 ant11-13', tpk='2024-05-07 16:30:00')
A second background interval can be defined right after the first one, e.g., bg2idx=[1000,1010]
In this example, the output files are eovsa.spec.flare_id_20240507163000.fits and eovsa.spec.flare_id_20240507163000.fits.
At the end, copy the .fits file to /common/webplots/events/2024:
cp eovsa.spec.flare_id_20240507163000.fits /common/webplots/events/2024
and include the flare in the wiki Flare List:
http://ovsa.njit.edu/wiki/index.php/2024
The flare position have been copied from the https://solarmonitor.org/